Abstract

It has been considered that three key elements participate in nitrogen catabolite repression (NCR) of Saccharomyces cerevisiae: the GLN3 and GAT1/NIL1-encoded transcriptional activators and their negative regulator Ure2. The fact that expression of various NCR-sensitive genes is not derepressed in the absence of Ure2 has led to the proposition that there must exist a protein with a similar function to that of Ure2. The results presented in this paper show that various NCR-sensitive genes are derepressed through GLN3-mediated transcriptional activation in a gcn4Δ mutant. This effect is additive to that exerted by the lack of Ure2 and to that evoked in rapamycin-treated cultures. Our results uncover the fact that NCR is not solely achieved through the action of Gln3, Gat1, and Ure2. Since Gcn4 regulates the expression of a broad spectrum of genes, the lack of this transcriptional activator could prevent the expression of a potential Gln3 antagonist. Alternatively, Gcn4 could directly hinder Gln3 functioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.