Abstract

The interaction between microbes and drugs encompasses the sourcing of pharmaceutical compounds, microbial drug degradation, the development of drug resistance genes, and the impact of microbial communities on host drug metabolism and immune modulation. These interactions significantly impact drug efficacy and the evolution of drug resistance. In this study, we propose a novel predictive model, termed GCGACNN. We first collected microbe, disease, and drug association data from multiple databases and the relevant literature to construct three association matrices and generate similarity feature matrices using Gaussian similarity functions. These association and similarity feature matrices were then input into a multi-layer Graph Neural Network for feature extraction, followed by a two-dimensional Convolutional Neural Network for feature fusion, ultimately establishing an effective predictive framework. Experimental results demonstrate that GCGACNN outperforms existing methods in predictive performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.