Abstract

Methylglyoxal (MG) is responsible for advanced glycation end-product formation, the mechanisms leading to diabetes pathogenesis and complications like acute coronary syndrome (ACS). Sugar metabolites, amino acids and fatty acids are possible substrates for MG. The study aimed to measure plasma MG substrate levels using a validated gas chromatography-mass spectrometry (GC-MS) method and explore their association with ACS risk in type 2 diabetes mellitus (T2DM). The study included 150 T2DM patients with ACS as cases and 150 T2DM without ACS as controls for the analysis of glucose, fructose, ribulose, sorbitol, glycerol, pyruvate, lactate, glycine, serine, threonine, C16:0, C16:1, C18:0, C18:1, C18:2, C18:3, C20:0 and C22:6 by GC-MS. Validated GC-MS methods were accurate, precise and sensitive. Cases significantly differed in plasma MG and metabolite levels except for lactate, C16:0, C18:0, C18:2, and C18:3 levels compared with controls. On multivariable logistic regression, plasma C20:0, C18:1, glycine and glycerol levels had increased odds of ACS risk. On multivariate receiver operating characteristic analysis, a model containing plasma C20:0, C16:1, C18:1, C18:2, serine, glycerol, lactate and threonine levels had the highest area under the curve value (0.932) for ACS diagnosis. In conclusion, plasma C20:0, C16:1, C18:1, glycine, glycerol and sorbitol levels were associated with ACS risk in T2DM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.