Abstract

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype because of its high metastatic potential. Immune evasion due to aberrant expression of programmed cell death ligand 1 (PD-L1) has also been reported recently in metastatic TNBC. However, the mechanism underlying metastatic progression and PD-L1 upregulation in TNBC is still largely unknown. Here, we found that guanylate binding protein 5 (GBP5) is expressed in higher levels in TNBC tissues than in non-TNBC and normal mammary tissues and serves as a poorer prognostic marker in breast cancer patients. Transwell cultivation indicated that GBP5 expression is causally related to cellular migration ability in the detected TNBC cell lines. Moreover, the computational simulation of the gene set enrichment analysis (GSEA) program against the GBP5 signature generated from its coexpression with other somatic genes in TNBC revealed that GBP5 upregulation may be associated with the activation of interferon gamma (IFN-γ)-responsive and NF-κB-related signaling cascades. In addition, we found that the coexpression of GBP5 with PD-L1 was significantly positive correlation in TNBC tissues. Robustly, our data showed that GBP5 knockdown in TNBC cells harboring a higher GBP5 level dramatically suppresses the number of migrated cells, the activity of IFN-γ/STAT1 and TNF-α/NF-κB signaling axes, and the expression of PD-L1. Importantly, the signature combining a higher GBP5 and PD-L1 level predicted the shortest time interval of brain metastasis in breast cancer patients. These findings not only uncover the oncogenic function of GBP5 but also provide a new strategy to combat metastatic/immunosuppressive TNBC by targeting GBP5 activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.