Abstract

This paper focuses on designing Gaussian sum approximation filter for both accurately and rapidly estimating the state of a class of nonlinear dynamic time-delay systems. Firstly, a novel nonaugmented Gaussian filter (GF) is derived, whose superiority in computation efficiency is theoretically analyzed as compared to the standard augmented GF. Secondly, a nonaugmented Gaussian sum filter (GSF) is proposed to accurately capture the state estimates by a weight sum of the above-proposed GF. In GSF, each GF component is independent from the others and can be performed in a parallel manner so that GSF is conducive to high-performance computing across many compute nodes. Finally, the performance of the proposed GSF is demonstrated by a vehicle suspension system with time delay, where the GSF achieves higher accuracy than the single GF and is computationally much more efficient than the particle filter with the almost same accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call