Abstract

We show that famous filtering algorithms such as Gaussian sum filter (GSF) and particle filter (PF) are derived from the multiple model estimation (MME). Based on the MME, we propose a new filter called particle Gaussian sum filter (PGSF) to overcome the problems of GSF and PF. To realize the algorithm of PGSF, we also show that ensemble Kalman filter (EnKF) asymptotically approaches Gaussian filter (GF) when using sufficiently large ensemble number. The PGSF employing the EnKF achieves higher estimation accuracy than that using the extended Kalman filter (EKF), while the latter approach is much faster in terms of processing time. We compare the proposed filter with several existing filters and demonstrate its effectiveness through a numerical simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.