Abstract

We introduce a new statistical modelling technique for building occupancy maps. The problem of mapping is addressed as a classification task where the robot’s environment is classified into regions of occupancy and free space. This is obtained by employing a modified Gaussian process as a non-parametric Bayesian learning technique to exploit the fact that real-world environments inherently possess structure. This structure introduces dependencies between points on the map which are not accounted for by many common mapping techniques such as occupancy grids. Our approach is an ‘anytime’ algorithm that is capable of generating accurate representations of large environments at arbitrary resolutions to suit many applications. It also provides inferences with associated variances into occluded regions and between sensor beams, even with relatively few observations. Crucially, the technique can handle noisy data, potentially from multiple sources, and fuse it into a robust common probabilistic representation of the robot’s surroundings. We demonstrate the benefits of our approach on simulated datasets with known ground truth and in outdoor urban environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call