Abstract
Edge-preserving image smoothing plays an important role in the fields of image processing and computational photography, and is widely used for a variety of applications. The edge-preserving filters based on global optimization models have attracted widespread attention due to their nice smoothing quality. According to existing research, the edge-preserving capability is strongly correlated to the penalty function used for gradient regularization. By analyzing the edge-stopping function of existing penalties, we demonstrate that existing image smoothing models are not adequately edge-preserving. In this paper, based on a Gaussian error function (ERF), we propose a Gaussian error loss function (ERLF), which shows stronger edge-preserving capability. We embed the proposed loss function into a global optimization model for edge-preserving image smoothing. In addition, we propose an efficient solution based on additive half-quadratic minimization and Fourier-domain optimization that is capable of processing 720P color images (over 20 fps) in real-time on an NVIDIA RTX 3070 GPU. We have experimented with the proposed filter on a number of low-level vision tasks. Both quantitative and qualitative experimental results show that the proposed filter outperforms existing filters. Therefore, it can be practical for real applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have