Abstract

The velocity of a passive particle in a one-dimensional wave field is shown to converge in law to a Wiener process, in the limit of a dense wave spectrum with independent complex amplitudes, where the random phases distribution is invariant modulo π/2 and the power spectrum expectation is uniform. The proof provides a full probabilistic foundation to the quasilinear approximation in this limit. The result extends to an arbitrary number of particles, founding the use of the ensemble picture for their behaviour in a single realization of the stochastic wave field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.