Abstract

In this study we develop a time-dependent wave equation for waves propagating with a current over permeable rippled beds. As well known, Bragg resonance occurs when the incident wavelength is twice the wavelength of the bottom ripple undulation and no current is present. However, the current in the near-shore region changes the resonance condition. A one-dimensional wave field is solved numerically based on the derived equation to study the effect of current on the Bragg resonance condition. Nonlinear wave–wave resonant interaction theory provides an explanation of the effect on Bragg resonance. Numerical results also indicate that the maximum reflection coefficient increases as current velocity increases from a negative to a positive value. Furthermore, the velocity of the current affects the position of the maximum reflection coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.