Abstract
The energy distribution of an actual star image coincides with the Gaussian law statistically in most cases, so the optimized processing algorithm about star image centroiding should be constructed also by following Gaussian law. For a star image spot covering a certain number of pixels, the marginal distribution of the gray accumulation on rows and columns are shown and analyzed, based on which the formulas of Gaussian Analytic Centroiding method (GAC) are deduced, and the robustness is also promoted due to the inherited filtering effect of gray accumulation. Ideal reference star images are simulated by the PSF (point spread function) with integral form. Precision and speed tests for the Gaussian Analytic formulas are conducted under three scenarios of Gaussian radius (0.5, 0.671, 0.8 pixel), The simulation results show that the precision of GAC method is better than that of the other given algorithms when the Gaussian radius is not bigger than 5×5 pixel window, a widely used parameter. Above all, the algorithm which consumes the least time is still the novel GAC method. GAC method helps to promote the comprehensive performance in the attitude determination of a star tracker.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have