Abstract
We investigate Gauss maps associated to great circle fibrations of the euclidean unit 3-sphere mathbb {S}^3. We show that the associated Gauss map to such a fibration is harmonic, respectively minimal, if and only if the unit vector field generating the great circle foliation is harmonic, respectively minimal. These results can be viewed as analogues of the classical theorem of Ruh and Vilms about the harmonicity of the Gauss map of a minimal submanifold in the euclidean space. Moreover, we prove that a harmonic or minimal unit vector field on mathbb {S}^3, whose integral curves are great circles, is a Hopf vector field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.