Abstract

In this work, we present the hitherto most efficient and accurate method for the numerical integration of post-Newtonian equations of motion. We first transform the Poisson system as given by the post-Newtonian approximation to canonically symplectic form. Then we apply Gauss Runge-Kutta schemes to numerically integrate the resulting equations. This yields a convenient method for the structure preserving long-time integration of post-Newtonian equations of motion. In extensive numerical experiments, this approach turns out to be faster and more accurate (i) than previously proposed structure preserving splitting schemes and (ii) than standard explicit Runge-Kutta methods. We also show our approach to be appropriate for simulations on transitional precession.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.