Abstract

The second-order extended stability Factorized Runge-Kutta-Chebyshev (FRKC2) class of explicit schemes for the integration of large systems of PDEs with diffusive terms is presented. FRKC2 schemes are straightforward to implement through ordered sequences of forward Euler steps with complex stepsizes, and easily parallelised for large scale problems on distributed architectures. Preserving 7 digits for accuracy at 16 digit precision, the schemes are theoretically capable of maintaining internal stability at acceleration factors in excess of 6000 with respect to standard explicit Runge-Kutta methods. The stability domains have approximately the same extents as those of RKC schemes, and are a third longer than those of RKL2 schemes. Extension of FRKC methods to fourth-order, by both complex splitting and Butcher composition techniques, is discussed. A publicly available implementation of the FRKC2 class of schemes may be obtained from this http URL

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.