Abstract

We calculate the exact Landau-Zener transition probabilities for a qubit with an arbitrary linear coupling to a bath at zero temperature. The final quantum state exhibits a peculiar entanglement between the qubit and the bath. In the special case of diagonal coupling, the bath does not influence the transition probability, whatever the speed of the Landau-Zener sweep. It is proposed to use Landau-Zener transitions to determine both the reorganization energy and the integrated spectral density of the bath. Possible applications include circuit QED and molecular nanomagnets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call