Abstract
A qubit may undergo Landau-Zener transitions due to its coupling to one or several quantum harmonic oscillators. First we show that for a qubit coupled to one oscillator, Landau-Zener transitions can be used for single-photon generation and for the controllable creation of qubit-oscillator entanglement, with state-of-the-art circuit QED as a promising realization. Second, for a qubit coupled to two cavities, we show that Landau-Zener sweeps of the qubit are well suited for the robust creation of entangled cavity states, in particular symmetric Bell states, with the qubit acting as the entanglementmediator. Finally, for a qubit coupledto an environmentor bath we proposeto employ dissipative Landau-Zener sweeps of the qubit for the detection of bath properties. At the heart of our proposals lies the calculation of the exact Landau-Zener transition probability for the qubit, by summing all orders of the corresponding series in time-dependent perturbation theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.