Abstract

Two new Gauge–Uzawa schemes are constructed for incompressible flows with variable density. One is in the conserved form while the other is in the convective form. It is shown that the first-order versions of both schemes, in their semi-discretized form, are unconditionally stable. Numerical experiments indicate that the first-order (resp. second-order) versions of the two schemes lead to first-order (resp. second-order) convergence rate for all variables and that these schemes are suitable for handling problems with large density ratios such as in the situation of air bubble rising in water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.