Abstract
We present an efficient time-stepping scheme for simulations of the coupled Navier–Stokes Cahn–Hilliard equations for the phase field approach. The scheme has several attractive characteristics: (i) it is suitable for large density ratios, and numerical experiments with density ratios up to 1000 have been presented; (ii) it involves only constant (time-independent) coefficient matrices for all flow variables, which can be pre-computed during pre-processing, so it effectively overcomes the performance bottleneck induced by variable coefficient matrices associated with the variable density and variable viscosity; (iii) it completely de-couples the computations of the velocity, pressure, and the phase field function. Strategy for spectral-element type spatial discretizations to overcome the difficulty associated with the large spatial order of the Cahn–Hilliard equation is also discussed. Ample numerical simulations demonstrate that the current algorithm, together with the Navier–Stokes Cahn–Hilliard phase field approach, is an efficient and effective method for studying two-phase flows involving large density ratios, moving contact lines, and interfacial topology changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.