Abstract
In this paper, we develop an efficient numerical method for the two phase moving contact line problem with variable density, viscosity, and slip length. The physical model is based on a phase field approach, which consists of a coupled system of the Cahn–Hilliard and Navier–Stokes equations with the generalized Navier boundary condition [1,2,5]. To overcome the difficulties due to large density and viscosity ratio, the Navier–Stokes equations are solved by a splitting method based on a pressure Poisson equation [11], while the Cahn–Hilliard equation is solved by a convex splitting method. We show that the method is stable under certain conditions. The linearized schemes are easy to implement and introduce only mild CFL time constraint. Numerical tests are carried out to verify the accuracy, stability and efficiency of the schemes. The method allows us to simulate the interface problems with extremely small interface thickness. Three dimensional simulations are included to validate the efficiency of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Computational Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.