Abstract

We study the invariance properties of five-dimensional metrics and their corresponding geodesic equations of motion. In this context a number of five-dimensional models of the Einstein–Gauss–Bonnet (EGB) theory leading to black holes, wormholes and spacetime horns arising in a variety of situations are discussed in the context of variational symmetries of which each vector field, via Noether’s theorem (NT), provides a nontrivial conservation law. In particular, it is shown that algebraic structure of isometries and the variational conservation laws of the five-dimensional Einstein–Bonnet metric extend consistently from the well-known Minkowski, de-Sitter and Schwarzschild four-dimensional spacetimes to the considered five-dimensional ones. In the equivalent five-dimensional case, the maximal algebra of kvs is fifteen with eight additional Noether symmetries. Also, whereas the constant curvature five-dimensional case leads to fifteen kvs and one additional Noether symmetry and seven plus one in the minimal case, a number of metrics of the EGB theory in five dimensions give rise to algebras isomorphic a seven-dimensional algebra of kvs and a single additional Noether symmetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call