Abstract
Orbital memory is defined by two stable valencies that can be electrically switched and read out. To explore the influence of an electric field on orbital memory, we studied the distance-dependent influence of an atomic Cu donor on the state favorability of an individual Co atom on black phosphorus. Using low temperature scanning tunneling microscopy and spectroscopy, we characterized the electronic properties of individual Cu donors, corroborating this behavior with abinitio calculations based on density functional theory. We studied the influence of an individual donor on the charging energy and stochastic behavior of an individual Co atom. We found a strong impact on the state favorability in the stochastic limit. These findings provide quantitative information about the influence of local electric fields on atomic orbital memory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.