Abstract

The effects of protein-kinase- (PKA-) dependent phosphorylation on the stationary gating kinetics of single ryanodine receptor (RyR) channels was defined. The single-channel activity from canine cardiac RyR was reconstituted into planar lipid bilayers. Exogenously applied PKA increased the single-channel open probability ( P(o)) of both native and purified cardiac RyR channels, after preincubation with ATP and Mg2+. The action of PKA on the RyR channel occurred only in the presence of ATP and adenosine 5'- O-(3-thiotriphosphate) (ATPgammaS), but not in the presence of 5'-adenylimidodiphosphate (AMP-PCP). Thus, the action of PKA requires the presence of a hydrolyzable ATP analog. PKA-induced channel activation was blocked by specific PKA inhibitors. All these results confirmed that the RyR channel can be phosphorylated by exogenous protein kinase. The gating kinetics of single RyR channels before PKA treatment were significantly altered by ATP and Mg2+ as physiological ligands. In contrast, after PKA treatment, neither ATP nor Mg2+ significantly alters the gating kinetics of these channels. PKA-dependent phosphorylation thus decreases the ATP and Mg2+ apparent sensitivity in most of the gating parameters of single RyR channels. The phosphorylated RyR channels open and close more frequently, stay open for longer, and stay closed for shorter periods. The dwell-time histograms obtained demonstrate that the phosphorylated and the dephosphorylated channels have strikingly different open and closed kinetics at physiological cytoplasmic concentrations of Mg and ATP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.