Abstract

In this article, a novel high robust and latch-up immune electrostatic discharge (ESD) protection device, called gate-controlled low-voltage-triggered silicon-controlled rectifier (GC-LVTSCR), is proposed for 5-V I/O protection applications in the advance 40-nm CMOS technology. By incorporating a surface current diverting path with a controlling poly-silicon gate (CG) into the conventional LVTSCR, the GC-LVTSCR’s ESD characteristics can be improved and modulated with two bias conditions of CG. The first improved GC-LVTSCR structure named gate-to-body SCR (GBSCR) with the CG tied to the PWell’s body is expected to realize higher holding voltage ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{V}_{\text{h}}\text{)}$</tex-math> </inline-formula> and lower trigger voltage ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{V}_{\text{t\text{1}}}\text{)}$</tex-math> </inline-formula> , while the other structure named gate-to-drain SCR (GDSCR) using the CG connected to the bridging p <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$+$</tex-math> </inline-formula> region of LVTSCR is designed to gain even higher <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{V}_{\text{h}}$</tex-math> </inline-formula> . Measurement results show that the GBSCR has <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\sim$</tex-math> </inline-formula> 11% lowered <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{V}_{\text{t\text{1}}}$</tex-math> </inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\sim$</tex-math> </inline-formula> 38% enhanced <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{V}_{\text{h}}$</tex-math> </inline-formula> , and improved charged device model (CDM) characteristics by comparing with the traditional LVTSCR, and the GDSCR possesses a further improved <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{V}_{\text{h}}$</tex-math> </inline-formula> with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\sim$</tex-math> </inline-formula> 45% higher than the GBSCR. Besides, the new devices are expected to protect 5 V or above I/O in submicrometer technologies and have been realized in a 0.18- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu $</tex-math> </inline-formula> m BCD process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call