Abstract
Airway mucus works as a protective barrier in the human body, as it entraps pathogens that will be later cleared from the airways by ciliary transport or by coughing, thus featuring the rheological properties of a highly stretchable gel. Nonetheless, the study of these physical barrier as well as transport properties remains limited due to the restricted and invasive access to lungs and bronchi to retrieve mucus and to the poor repeatability inherent to native mucus samples. To overcome these limits, we report on a biobased synthetic mucus prepared from snail slime and multibranched thiol cross-linker, which are able to establish disulfide bonds, in analogy with the disulfide bonding of mucins, and therefore build viscoelastoplastic hydrogels. The gel macroscopic properties are tuned by modifying the cross-linker and slime concentrations and can quantitatively match those of native sputum from donors with cystic fibrosis (CF) or non-cystic fibrosis bronchiectasis (NCFB) both in the small- and large-deformation regimes. Heterogeneous regimes were locally found in the mucus model by passive microrheology, in which both diffusive and non-diffusive motion are present, similar to what is observed in sputa. The biobased synthetic approach proposed in the present study thus allows to produce, with commercially available components, a promising model to native respiratory mucus regarding both mechanical and, to a lesser extent, physicochemical aspects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.