Abstract

Pseudomonas aeruginosa (Pa), normally a soil commensal, is an important opportunistic pathogen in Cystic Fibrosis (CF) and non-Cystic Fibrosis Bronchiectasis (nCFBR). Persistent infection correlates with accelerated decline in lung function and early mortality. The horizontal transfer of DNA by temperate bacteriophages can add gene function and selective advantages to their bacterial host within the constrained environment of the lower lung. In this study, we chemically induce temperate bacteriophages from clonal cultures of Pa and identify their mixed viral communities employing metagenomic approaches. We compared 92 temperate phage metagenomes stratified from these clinical backgrounds (47 CF and 45 nCFBR Pa isolates) using MG-RAST and GeneWise2. KEGG analysis shows the complexity of temperate phage accessory gene carriage increases with duration and severity of the disease. Furthermore, we identify the presence of Ig-like motifs within phage structural genes linked to bacterial adhesion and carbohydrate binding including Big_2, He_Pig, and Fn3. This study provides the first clinical support to the proposed bacteriophage adherence to mucus (BAM) model and the evolution of phages interacting at these mucosal surfaces over time.

Highlights

  • Chronic respiratory diseases are associated with about 4 million deaths globally per annum (WHO1)

  • Putative mixed viral communities were induced from a crosssectional panel of 92 Pseudomonas aeruginosa (Pa) bacterial isolates, 47 isolated from Cystic Fibrosis (CF) patients and 45 Non-Cystic Fibrosis bronchiectasis (nCFBR) stratified further by patient clinical information detailed in the methods

  • This study reports the first use of metagenomic approaches to identify the inducible temperate bacteriophages isolated from single clonal cultures of Pseudomonas aeruginosa (Pa) colonizing the lungs of patients with CF and nCFBR

Read more

Summary

Introduction

Chronic respiratory diseases are associated with about 4 million deaths globally per annum (WHO1). Cystic Fibrosis (CF) is a rare but well documented inherited chronic respiratory disease that is characterized by chronic bacterial infections of the lung (Mall and Boucher, 2014). Non-Cystic Fibrosis bronchiectasis (nCFBR) is usually associated with an older population; it is an abnormal and irreversible dilation of the lower bronchi. Opportunistic bacteria colonize the lungs of patients with chronic respiratory disease and utilize the nutrient rich mucus lining of the lower airways allowing for bacterial replication and evolution to occur in an often deteriorating microenvironment (Nelson et al, 2010; Hauser et al, 2011; Rudkjobing et al, 2011). Other bacteria that are commonly isolated from chronically infected lung include; Staphylococcus aureus, Haemophilus. Multiple phages have been previously identified in Pa isolated from the CF lungs (Winstanley et al, 2009)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.