Abstract

NAND flash memory has been widely used as storage medium in diverse environments due to its light weight, low power consumption, and high I/O performance. Page replacement is an important operation in NAND flash- based storage systems. However, traditional replacement algorithms designed for magnetic disks fail to meet the needs of NAND flash memory due to inherent features such as asymmetric I/O latencies and erase-before- write. In order to address this problem, this paper proposes a new page replacement algorithm, called Ghost buffer Assisted and Self-tuning Algorithm (GASA). GASA reduces expensive flash write operations by evicting cold clean pages preferentially and maintains reasonable buffer hit ratios via a ghost buffer. In addition, GASA is self-tuning due to the use of a simple learning scheme, thus adaptively matching different workloads and buffer sizes. Experimental results based on real-world OLTP traces demonstrate that GASA offers a good trade-off between the hit ratio and the flash write count, thus achieving better I/O performance than the state-of-the-art page replacement algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call