Abstract
A spectroscopy system for gas detection based on a terahertz (THz) parallel-plate waveguide leaky-wave antenna is presented. Compared to conventional THz spectroscopy systems, we exploit the intrinsic dispersive behavior of a leaky-wave antenna to detect multiple spectral absorption peaks of the considered target. The proposed THz antenna is tested and validated by means of full-wave simulations and experimental measurements on a manufactured prototype. A gas detection experiment considering acetonitrile (i.e., CH3CN) has been carried out to characterize the performance of the spectroscopy system. The directional patterns of the leaky-wave antenna are demonstrated to map the absorption characteristic peaks of the CH3CN, thus enabling an extension of the detection range. Thanks to the intrinsic frequency-scanning behavior of the antenna, each absorption peak can be associated with an angle, enabling, therefore, spatial discrimination to monitor gas spreading.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have