Abstract

TiO2 films of 130 nm and 463 nm in thickness were deposited by ion beam sputter deposition (IBSD), followed by annealing at temperatures of 800 °C and 1000 °C. The effect of H2, CO, CO2, NO2, NO, CH4 and O2 on the electrically conductive properties of annealed TiO2 thin films in the operating temperature range of 200–750 °C were studied. The prospects of IBSD deposited TiO2 thin films in the development of high operating temperature and high stability O2 sensors were investigated. TiO2 films with a thickness of 130 nm and annealed at 800 °C demonstrated the highest response to O2, of 7.5 arb.un. when exposed to 40 vol. %. An increase in the annealing temperature of up to 1000 °C at the same film thickness made it possible to reduce the response and recovery by 2 times, due to changes in the microstructure of the film surface. The films demonstrated high sensitivity to H2 and nitrogen oxides at an operating temperature of 600 °C. The possibility of controlling the responses to different gases by varying the conditions of their annealing and thicknesses was shown. A feasible mechanism for the sensory effect in the IBSD TiO2 thin films was proposed and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call