Abstract

A rapid, clean, and continuous hydrothermal route to the synthesis of ca. 14 nm indium oxide (In(2)O(3)) nanoparticles using a superheated water flow at 400 °C and 24.1 MPa as a crystallizing medium and reagent is described. Powder X-ray diffraction (XRD) of the particles revealed that they were highly crystalline despite their very short time under hydrothermal flow conditions. Gas sensing substrates were prepared from an In(2)O(3) suspension via drop-coating, and their gas sensing properties were tested for response to butane, ethanol, CO, ammonia, and NO(2) gases. The sensors showed excellent selectivity toward ethanol, giving a response of 18-20 ppm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.