Abstract
Metal oxide nanoparticles are promising materials in applications for fuel cells, gas sensors and fine chemical catalysis. Their functionality depends excessively on composition, structure as well as synthesis and processing conditions. Continuous hydrothermal flow synthesis (CHFS) reactors are an effective technology to make nanoceramics. In order to increase sample throughput of CHFS, a manual high-throughput continuous hydrothermal (HiTCH) flow synthesis process capable of formulating scores of samples per day was developed. More recently, a fully automated nanoceramics synthesis platform called RAMSI (rapid automated synthesis instrument) based on the HiTCH synthesis technology was developed. When large numbers of nanoceramics are made and formulated into appropriate libraries, automated analytical instruments can be used to allow collection of a large amount of useful data. This paper describes the information flow management system of RAMSI (as well as CHFS) and the data mining system for supporting discovery, QSAR (quantitative structure–activity relationship) modeling and DoE (design of experiments). Case studies demonstrating the use of the high-throughput data mining system are presented. These include clustering of Raman spectra, interpretation of X-ray diffraction (XRD) measurements, and QSAR model building linking XRD data and photocatalytic properties. A genetic algorithm method for DoE is also presented that can guide the experiments to search optimal XRD patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.