Abstract

The dependence of the gas response on the gate metal morphology of field-effect gas sensors has been investigated in a new systematic way by using a scanning light pulse technique (SLPT) together with fabrication of metal gates where the metal morphology is continuously varied over the gate area. With the SLPT the local gas response at different points of the gate area can be measured. Furthermore, a mass spectrometric local gas sampling technique has been applied in combination with the local gas response measurements, which gives complementary information about the surface chemistry and how it changes with the morphology of the metal gate. Three different gate metals, Pd, Pt and Ir, have been studied by analysing the morphology and the gas response to five different gases, H 2, NH 3, C 2H 5OH, C 2H 4 and CH 3CHO. Morphological aspects such as crack coverage, concentration of cracks and the length of the crack boundary, have been calculated from acquired scanning electron microscopy (SEM) images. Different possible response mechanisms are discussed in order to explain the observed responses and to understand the role of the morphology and the choice of the catalytic metal. Only in the case of ammonia a direct correlation between the morphological aspects, e.g. crack coverage, and the response was found. For Pd large changes in the local water pressure close to the metal gate surface have been measured at different parts of the metal gate by using the local gas sampling technique and a correlation is observed with the simultaneously measured gas response. Of the response mechanisms discussed in this contribution only a dissociative mechanism, where hydrogen atoms trapped at the interface between the metal gate and the insulator gives the response of the device, is consistent with all obtained results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call