Abstract

To improve the identification accuracy of gas pipeline leakage and reduce the false alarm rate, a pipeline leakage detection method based on improved uniform-phase local characteristic-scale decomposition (IUPLCD) and grid search algorithm-optimized twin-bounded support vector machine (GS-TBSVM) was proposed. First, the signal was decomposed into several intrinsic scale components (ISC) by the UPLCD algorithm. Then, the signal reconstruction process of UPLCD was optimized and improved according to the energy and standard deviation of the amplitude of each ISC, the ISC components dominated by the signal were selected for signal reconstruction, and the denoised signal was obtained. Finally, the TBSVM was optimized using a grid search algorithm, and a GS-TBSVM model for pipeline leakage identification was constructed. The input of the GS-TBSVM model was the data processed by the IUPLCD algorithm, and the output was the real-time working conditions of the gas pipeline. The experimental results show that IUPLCD can effectively filter the noise in the signal and GS-TBSVM can accurately judge the working conditions of the gas pipeline, with a maximum identification accuracy of 98.4%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call