Abstract

Molecular beam experiments together with electronic structure calculations provide the first evidence of a complex network of elementary gas-phase reactions culminating in the bottom-up preparation of the 24π aromatic coronene (C24H12) molecule─a representative peri-fused polycyclic aromatic hydrocarbon (PAH) central to the complex chemistry of combustion systems and circumstellar envelopes of carbon stars. The gas-phase synthesis of coronene proceeds via aryl radical-mediated ring annulations through benzo[e]pyrene (C20H12) and benzo[ghi]perylene (C22H12) involving armchair-, zigzag-, and arm-zig-edged aromatic intermediates, highlighting the chemical diversity of molecular mass growth processes to polycyclic aromatic hydrocarbons. The isomer-selective identification of five- to six-ringed aromatics culminating with the detection of coronene is accomplished through photoionization and is based upon photoionization efficiency curves along with photoion mass-selected threshold photoelectron spectra, providing a versatile concept of molecular mass growth processes via aromatic and resonantly stabilized free radical intermediates to two-dimensional carbonaceous nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.