Abstract

Carbon dioxide (CO2) was used as a reaction gas to investigate the gas‐phase ion‐molecule interactions using the Agilent 8900 ICP‐MS/MS. A solution containing forty‐five elements representative of the periodic table was used to supply the ions to react with CO2 in the collision/reaction cell (CRC). The only significant product ions formed were monoxides. The general reactivity was shown to be consistent with density functional theory (DFT)‐predicted reaction enthalpies, such that all predicted exothermic reactions produced product ions at levels of at least 1% of the unreacted ion. Most endothermic reactions observed had sufficient kinetic energy in excess of the reaction enthalpies. Our results suggest that reaction enthalpy is a reasonable predictor of reactivity with CO2 on the timescales of the interactions in non‐thermal ICP‐MS/MS systems. The ease and rapidity of data collection with the ICP‐MS/MS and DFT calculations using the NWChem suite has value given the scarcity of thermochemical data of CO2 reactions in the literature. These studies are especially useful for the identification of targeted reaction chemistries to be leveraged for analytical method development, such as for the inline separation of isobaric interferences from analytes of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.