Abstract

The gas-phase alkylation of imidazole with methanol was studied at 523K on solid acids such as HPA/SiO2 and zeolites HMCM22, HBEA, NaY, ZnY and HY. The nature, density and strength of acid sites were determined by temperature programmed desorption of NH3 coupled with infrared spectra of adsorbed pyridine. Coke formation was studied by temperature programmed oxidation technique. On all the samples, the selectivity to N-methylimidazole was greater than 98%. Catalysts presenting essentially Lewis (NaY and ZnY) or Brønsted (HPA/SiO2) acidity did not promote efficiently the methylation of imidazole and yielded less than 20% of N-methylimidazole. In contrast, on samples containing similar concentration of Lewis and Brønsted acid sites (HY, HBEA, HMCM22) the N-methylimidazole yield was between 60% (HMCM22) and 100% (HY). All the samples deactivated during the 4h catalytic tests and formed significant amounts of coke, between 2.3% (NaY) and 8% (ZnY). Catalytic tests performed at different contact times showed that the initial activity decay diminished with increasing imidazole conversion, suggesting that catalyst deactivation is mainly related with the presence of the reactants, methanol and/or imidazole. In order to gain insight on the catalyst deactivation mechanism, additional catalytic tests using different feed compositions were performed. They showed that the initial catalyst deactivation followed a linear correlation with the partial pressure of imidazole which indicated that the activity decay is essentially related with strong adsorption of imidazole on surface acid sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.