Abstract

A high-temperature-resistant heterogeneous poly (dimethyl siloxane) membrane was prepared in situ by using monomer gas-phase polymerization in microporous media without employing prepolymerization. The permeation rates for various gases were measured at penetrant pressure up to 233 cmHg and at temperatures between 20°C and 200°C. The permeation rates for low-soluble gases, such as He, H 2, N 2, CO, O 2, and Ar, increased with increasing temperature. On the other hand, the permeation rates for highly soluble gases, such as C 2H 4 and CO 2, decreased with increasing temperature. For all gases, the permeation rate increases or decreases linearly with the increase of temperature. The turning points were observed for all gases in the temperature range of 140-160°C. Permeation rates of most gases decreased with the increase of temperature above the turning point, excepting those of helium and hydrogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.