Abstract
We demonstrate on-chip gas/liquid sensing by using the chemotaxis of live bacteria (Euglena gracilis) confined in an isolated micro-aquarium, and gas/liquid permeation through porous polydimethylsiloxane (PDMS). The sensing chip consisted of one closed micro-aquarium and two separated bypass microchannels along the perimeter of the micro-aquarium. Test gas/liquid and reference samples were introduced into the two individual microchannels separately, and the gas/liquid permeated through the PDMS walls and dissolved in the micro-aquarium water, resulting in a chemical concentration gradient in the micro-aquarium. By employing the closed micro-aquarium isolated from sample flows, we succeeded in measuring the chemotaxis of Euglena for a gas substance quantitatively, which cannot be achieved with the conventional flow-type or hydro-gel-type microfluidic devices. We found positive (negative) chemotaxis for CO2 concentrations below (above) 15%, with 64 ppm as the minimum concentration affecting the cells. We also observed chemotaxis for ethanol and H2O2. By supplying culture medium via the microchannels, the Euglena culture remained alive for more than 2 months. The sensing chip is thus useful for culturing cells and using them for environmental toxicity/nutrition studies by monitoring their motion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have