Abstract

In many astrophysical plasmas, the Coulomb collision is insufficient to maintain an isotropic temperature, and the system is driven to the anisotropic regime. In this case, magnetohydrodynamic (MHD) models with anisotropic pressure are needed to describe such a plasma system. To solve the anisotropic MHD equation numerically, we develop a robust Gas-Kinetic flux scheme for non-linear MHD flows. Using anisotropic velocity distribution functions, the numerical flux functions are derived for updating the macroscopic plasma variables. The schemes are suitable for finite-volume solvers which utilize a conservative form of the mass, momentum and total energy equations, and can be easily applied to multi-fluid problems and extended to more generalized double polytropic plasma systems. Test results show that the numerical scheme is very robust and performs well for both linear wave and non-linear MHD problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call