Abstract

Electrocatalytic CO2 reduction (ECR) to high value-added chemicals is an excellent method to attenuate the impact of greenhouse effect caused by CO2. At the same time, multicarbon products (C2+) get extensive attention in view of their relatively high energy density and market price. At present, Cu is an important metal electrocatalyst to convert CO2 into multicarbon products (e.g. ethylene, ethanol, and n-propanol); however, its poor selectivity impedes its practical application. It is well-known that the Cu(100) crystal facet can enhance the selectivity toward multicarbon products among different Cu crystal facets. Herein, the Cu nanoparticles were firstly prepared using the inductive effect of different gases (CO2, CO, Ar, N2, and air) during the Cu electrodeposition processes, in which the CO2-induced Cu catalyst (Cu-CO2) showed the largest normalized content of the Cu(100) crystal facet and the highest C2+ faradaic efficiency of 69% at a current density of 80 mA cm-2 in ECR. Subsequently, the different CO2 pressures during the Cu electrodepositions were studied to reveal the optimal CO2 pressure in the CO2-induced Cu synthesis for improved Cu(100) content as well as C2+ faradaic efficiency. Finally, density functional theory (DFT) calculations confirmed that CO2 molecules preferred to get adsorbed on the Cu(100) crystal facet, which resulted in not only the presence of dominant Cu(100) during the CO2-induced Cu synthesis but also the good electrocatalytic performance in ECR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.