Abstract
Multichannel seismic data, containing high-amplitude reflections from Cenozoic sediments of the Bjørnøya Basin, southwestern Barents Sea, have been studied, inferring the existence of gas hydrate and free gas. The Cenozoic succession comprises Late Palaeocene and Early Eocene claystones and siltstones and locally also some sandstones overlain by Late Pleistocene glaciogenic sediments. The inferred gas hydrate and free gas accumulations are mainly located in the vicinity of larger faults which can be followed up to base Tertiary level, and which seem to have controlled the geographical distribution of the accumulations. Free gas accumulations are inferred to occur most frequently within the Late Palaeocene strata that occur below the gas hydrate stability zone, and indicate that relatively small gas leakages from deeper accumulations have dominated. Larger gas leakages have probably led to gas migration up into the gas hydrate stability zone and, together with the increasing thickness of the hydrate stability zone towards the north, control the distribution of the suspected gas hydrates. The inferred gas leakages are closely related to the Cenozoic evolution of the Barents Sea, and are probably caused by gas expansion due to the removal of up to 1 km of sediments from the Barents Sea shelf and/or reservoir tilting during the Late Cenozoic glaciations which affected this area.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have