Abstract

For reconstruction of bone defects resulting from the treatment of bone fractures or tumors or for the reconstruction of bone tissues following the surgery of organs or the like, biomaterials, including metals, polymers and ceramics, have been used. In this study, among ceramic materials, biphasic calcium phosphate (BCP) consisting of hydroxyapatite having excellent bioactivity and osteoconductivity, and β-tricalcium phosphate having high biodegradability, were mixed at a ratio of 60:40, which is suitable for new bone formation. To manufacture porous BCP scaffold, which has interconnected pores and is suitable for tissue regeneration and reconstruction, a polyurethane foaming (gas foaming) fabrication was applied to manufacture a bone scaffold satisfying various functional requirements. As the results, bone scaffolds having a pore size ranging from 300 μm to 800 μm and a porosity ranging from 75% to 85% could be manufactured using this process. In in vitro and in vivo animal tests, it was confirmed that the scaffold manufactured in this study can be effectively used as a bone scaffold, which is biocompatible and has the ability to induce bone differentiation and regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call