Abstract

Abstract The paper outlines a finite volumes refined mathematical model of the working gas flow in the flow path of the three stage modern single shaft gas turbine engine that can be used in floating power plants. Such mathematical model based on the finite volumes of hexagonal-type was constructed using the three-dimensional Navier–Stokes equations for the case of viscous working fluid flow. For the problem solution such boundary conditions as “inlet’, “outlet” and “wall” have been used. The calculation is carried out in a non-stationary setting with a time step of 1.5974 × 10−6 s, which corresponds to the angle of rotation of the rotor, relative to the stator, of 0.09°. The total number of time iterations is 350. Also, it was shown that the variation field of pressure on the blades feather surfaces and the gas flow velocity due to rotation are the critical factors, causing the blades vibration. The result was confirmed with the experiment. The obtained results would be used as a base for further investigations of gas flow pressure field on the blades surface, because the gas flow pressure are key factors, causing the rotor forced vibration, and as initial data for their fatigue strength and crack study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.