Abstract

The gas chromatographic and mass spectrometric properties of the monohydroxy acids 5-hydroxyeicosatetraenoic acid (5-HETE), 12-hydroxyeicosatetraenoic acid (12-HETE) and 15-hydroxyeicosatetraenoic acid (15-HETE) as their methyl ester trimethylsilyl, methyl ester allyldimethylsilyl and methyl ester tert.-butyldimethylsilyl ethers were investigated. The gas chromatographic properties of the trimethylsilyl and tert.-butyldimethylsilyl derivatives were found to be excellent while the allyldimethylsilyl derivative required a well deactivated column. The mass spectra of these silyl derivatives with the exception for 12-HETE did not exhibit particulary intense ions in the upper mass region. A quantitative analysis by selected-ion monitoring of the most intense ion in the upper mass region of respective mass spectrum demonstrated that a detection limit in the low picogram range could only be obtained for 12-HETE. Since the mass spectra indicated that the double bonds exerted a strong influence on the fragmentation pattern, the trimethylsilyl, allyldimethylsilyl and tert.-butyldimethylsilyl ethers of the methyl esters of the reduced analogues of the monohydroxy acids were prepared. The saturation of the double bonds completely altered the fragmentation patterns and very intense ions carrying a high percentage of the total ion abundance were found in all of the mass spectra. The developed technique was utilized for measurements of 5-HETE in lung tissue samples from patients with lung cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.