Abstract

A sensitive method for determination of fluoridated phosphonates produced by fluoride-mediated regeneration of nerve agent adduct in human serum was developed using gas chromatography-mass spectrometry (GCMS) with large-volume injection. The GC injection was administered using stomach-type spiral injector (LVI, AiSTI SCIENCE) enabling introduction of only target compounds from 50 μL ethyl acetate extract after purging the solvent. For GCMS analysis of sarin (GB), 670 times higher sensitivity, based on limit of detection (LOD, S/N = 3, on extracted ion chromatogram (EIC) at m/z 99), was achieved using this injection (50 μL) compared to that achieved using 1 μL split injection (ratio 20:1). Ethyl (EtGB), isopropyl (GB), n-propyl (nPrGB), isobutyl (iBuGB), pinacolyl (GD), cyclohexyl (GF) methylphosphonofluoridates, and O-ethyl N, N-dimethylphosphoramidofluoridate (GAF) were detected with low LOD (15–75 pg/mL) and sharp peak shapes (high practical plate number (defined as 5.54 x (tR/Wh)2, where tR is the retention time and Wh is the bandwidth at half-height): 1100000–2400000) in GCMS using a polar separation column, electron ionization, and quadruple mass analyzer. During the analysis of fluoridated phosphonate-spiked ethyl acetate extract of solid phase extraction (SPE, Bond Elut NEXUS) from fluoride-mediated regeneration of blank human plasma, LOD (on EIC at m/z 99 except for GAF (m/z 126)) were 25–140 pg/mL with sharp peak shapes. The reaction recoveries in fluoride-mediated regeneration of plasma, which was inhibited by GB, GD, GA, GF, VX, and Russian VX (10 ng/mL), were 49–114% except for GD (10%). The concentration levels of 0.3–1 ng/mL of nerve agents in plasma could be determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call