Abstract

In this paper, we propose and study two time-splitting spectral methods for the generalized Zakharov system. These methods are spectrally accurate in space, second order in time, and unconditionally stable. The unconditional stability of the methods offers greater numerical efficiency than those given in previous papers, especially in the subsonic regime. Our numerical experiments confirm the accuracy and stability. In particular, we analyze their behavior in the subsonic regime. The first method, using the exact time integration in phase space for the wave equation for the nondispersive field, converges uniformly with respect to the sound speed for the dispersive wave field, while the second method, using the Crank–Nicolson method in the same step, with an initial layer fix by an L-stable time discretization, converges uniformly with respect to the sound speed for both dispersive and nondispersive fields. Using these new methods we also study the collision behavior of two solitons, in the subsonic region as well as the transsonic region. We obtain numerical results which are quantitatively different from those reported in previous papers using lower resolution numerical techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.