Abstract

Perillyl alcohol (POH), a metabolite of d-limonene and a component of the lavender oil, is currently in Phase I clinical trials both as a chemopreventative and chemotherapeutic agent. In vivo, POH is metabolized to less active perillic acid (PA) and cis- and trans-dihydroperillic acids [DHPA, 4-(1′-methylethenyl)-cyclohexane-1-carboxylic acid]. Previous pharmacokinetic studies using a GC–MS method detected POH metabolites but not POH itself; thus these studies lacked information on the parent drug. The present report describes a sensitive GC–MS method for the quantitation of POH and metabolites using stable-isotopically labeled internal standards. The residue obtained from CH 2Cl 2 extraction of a plasma sample was silylated. The products were separated on a capillary column and analyzed by an ion-trap GC–MS using NH 3 chemical ionization. POH-d 3 was used as the internal standard for POH while 13C-PA-d 2 was used as the internal standards for the metabolites. The quantitation limits for POH, PA, cis- and trans-DPA were <10 ng/ml using 1–2 ml plasma. The assay was validated in rat and human plasma. The assay was linear from 2 to 2000 ng/ml for POH, 10 to 1000 ng/ml for PA and trans-DHPA, and 20 to 1000 ng/ml for cis-DHPA monitored. The within-run and between-run coefficients of variation were all <8%. Preliminary pharmacokinetic data from a rat following i.v. administration of POH at 23 mg/kg and from a patient receiving POH at 500 mg/m 2 p.o. was also provided. Intact POH, PA, cis- and trans-DHPA were all detected in plasma in both cases. Two new major metabolites were found in human and one in the rat plasma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call