Abstract
Oscillations of gas bubbles in liquids irradiated with acoustic pressure waves may result in an intriguing physical phenomenon called sonoluminescence, where a collapsing bubble emits the in a broad optical spectral range. However, the intensity of the so-generated light is typically weak for practical purposes. Recently, it has been demonstrated that nanoparticles can be used to increase the efficiency of sonoluminescence, thereby enabling one to generate light that is intense enough for a number of applications in photonics, biomedicine, and materials science. In this article, we review the latest achievements in the field of nanoparticle-enhanced sonoluminescence and showcase the perspectives of their practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.