Abstract

Biomineralization inspired process to produce polymer of desired need is a promising approach in the field of research. In the present work, the bacterial cellulose (BC) based nanocomposites with a 3D network were synthesized via a biological route by choosing the calcium salt of primary metabolites (calcium gluconate) as the carbon source. The BC based composites were characterized by employing with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). During the preparation of nanocomposites, the calcium ions embedded on the cellulose fibrils were served as the nucleation center and calcium carbonate was deposited into BC network in the assistance of CO2. The uniform distribution of embedded objects on the cellulose nanofibers between internal and external was achieved. The exploitation of organisms for inorganic growth, shape and self-assembling explores new opportunities to the design of original nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.