Abstract

The use of bio-based residues is one of the key indicators towards sustainable development goals. In this work, bacterial cellulose, a residue from the fermentation of kombucha tea, was tested as a reinforcing nanofiber network in an emulsion-polymerized poly(methyl methacrylate) (PMMA) matrix. The use of the nanofiber network is facilitating the formation of nanocomposites with well-dispersed nanofibers without using organic solvents or expensive methodologies. Moreover, the bacterial cellulose network structure can serve as a template for the emulsion polymerization of PMMA. The morphology, size, crystallinity, water uptake, and mechanical properties of the kombucha bacterial cellulose (KBC) network were studied. The results showed that KBC nanofibril diameters were ranging between 20–40 nm and the KBC was highly crystalline, >90%. The 3D network was lightweight and porous material, having a density of only 0.014 g/cm3. Furthermore, the compressed KBC network had very good mechanical properties, the E-modulus was 8 GPa, and the tensile strength was 172 MPa. The prepared nanocomposites with a KBC concentration of 8 wt.% were translucent with uniform structure confirmed with scanning electron microscopy study, and furthermore, the KBC network was homogeneously impregnated with the PMMA matrix. The mechanical testing of the nanocomposite showed high stiffness compared to the neat PMMA. A simple simulation of the tensile strength was used to understand the limited strain and strength given by the bacterial cellulose network. The excellent properties of the final material demonstrate the capability of a residue of kombucha fermentation as an excellent nanofiber template for use in polymer nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.