Abstract
Trinuclear oxothiomolybdenum(IV) glycolates (H2glyc, glycolic acid) with 2-methylimidazole (2-mim), 4-methylimidazole (4-mim), and sulfite, Na2[MoIV3(μ3-S)(μ2-O)3(glyc)3(2-mim)3]·1.5H2O (1), (4-Hmim)6[MoIV3(μ3-S)(μ2-O)3(glyc)3(4-mim)3]2[MoVIO2(glyc)2] (2), and Na3(4-Hmim)[MoIV3(μ3-S)(μ2-O)3(SO3)(glyc)3(4-mim)]·8H2O (3), have been isolated in reduced media, where 4-methylimidazole trinuclear oxothiomolybdenum(IV) glycolates in 2 coprecipitate with dioxomolybdenum(VI) glycolate, exhibiting unusual mixed valences of 4+ and 6+. Large downfield shifts of glycolates have been observed in solid-state and solution 13C (1H) NMR spectra with coordination to Mo, indicating obvious dissociation of soluble 1 and 3 in solution. Investigations of the coordination modes and conversions among the three complexes give insight into the reactivities of trinuclear oxothiomolybdenum(IV) complexes. Channels with 3.1 × 7.0 Å2 diameters exist in 2, showing reversible O2 absorption of 65.03 mg at 29.9 bar compared with little or no adsorption of N2, H2, CO2, and CH4 at room temperature, respectively. Moreover, trinuclear 2- or 4-methylimidazole oxothiomolybdenum(IV) glycolates 1 and 3 show only a few adsorptions for O2 under the same conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.